Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca2+ signaling in human cells.

Identifieur interne : 001F42 ( Ncbi/Merge ); précédent : 001F41; suivant : 001F43

A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca2+ signaling in human cells.

Auteurs : Gihan S. Gunaratne [États-Unis] ; Malcolm E. Johns [États-Unis] ; Hallie M. Hintz [États-Unis] ; Timothy F. Walseth [États-Unis] ; Jonathan S. Marchant [États-Unis]

Source :

RBID : pubmed:30145428

Descripteurs français

English descriptors

Abstract

The Ca2+ mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) regulates intracellular trafficking events, including translocation of certain enveloped viruses through the endolysosomal system. Targeting NAADP-evoked Ca2+ signaling may therefore be an effective strategy for discovering novel antivirals as well as therapeutics for other disorders. To aid discovery of novel scaffolds that modulate NAADP-evoked Ca2+ signaling in human cells, we have investigated the potential of using the sea urchin egg homogenate system for a screening campaign. Known pharmacological inhibitors of NAADP-evoked Ca2+ release (but not cADPR- or IP3-evoked Ca2+ release) in this invertebrate system strongly correlated with inhibition of MERS-pseudovirus infectivity in a human cell line. A primary screen of 1534 compounds yielded eighteen 'hits' exhibiting >80% inhibition of NAADP-evoked Ca2+ release. A validation pipeline for these candidates yielded seven drugs that inhibited NAADP-evoked Ca2+ release without depleting acidic Ca2+ stores in a human cell line. These candidates displayed a similar penetrance of inhibition in both the sea urchin system and the human cell line, and the extent of inhibition of NAADP-evoked Ca2+ signals correlated well with observed inhibition of infectivity of a Middle East Respiratory syndrome coronavirus (MERS-CoV) pseudovirus. These experiments support the potential of this simple, homogenate system for screening campaigns to discover modulators of NAADP, cADPR and IP3-dependent Ca2+ signaling with potential therapeutic value.

DOI: 10.1016/j.ceca.2018.08.002
PubMed: 30145428

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:30145428

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca
<sup>2+</sup>
signaling in human cells.</title>
<author>
<name sortKey="Gunaratne, Gihan S" sort="Gunaratne, Gihan S" uniqKey="Gunaratne G" first="Gihan S" last="Gunaratne">Gihan S. Gunaratne</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of Minnesota Medical School, MN 55455</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johns, Malcolm E" sort="Johns, Malcolm E" uniqKey="Johns M" first="Malcolm E" last="Johns">Malcolm E. Johns</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of Minnesota Medical School, MN 55455</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hintz, Hallie M" sort="Hintz, Hallie M" uniqKey="Hintz H" first="Hallie M" last="Hintz">Hallie M. Hintz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of Minnesota Medical School, MN 55455</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walseth, Timothy F" sort="Walseth, Timothy F" uniqKey="Walseth T" first="Timothy F" last="Walseth">Timothy F. Walseth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of Minnesota Medical School, MN 55455</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marchant, Jonathan S" sort="Marchant, Jonathan S" uniqKey="Marchant J" first="Jonathan S" last="Marchant">Jonathan S. Marchant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA. Electronic address: JMarchant@mcw.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226</wicri:regionArea>
<wicri:noRegion>Milwaukee WI 53226</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30145428</idno>
<idno type="pmid">30145428</idno>
<idno type="doi">10.1016/j.ceca.2018.08.002</idno>
<idno type="wicri:Area/PubMed/Corpus">000800</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000800</idno>
<idno type="wicri:Area/PubMed/Curation">000800</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000800</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000A30</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000A30</idno>
<idno type="wicri:Area/Ncbi/Merge">001F42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca
<sup>2+</sup>
signaling in human cells.</title>
<author>
<name sortKey="Gunaratne, Gihan S" sort="Gunaratne, Gihan S" uniqKey="Gunaratne G" first="Gihan S" last="Gunaratne">Gihan S. Gunaratne</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of Minnesota Medical School, MN 55455</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Johns, Malcolm E" sort="Johns, Malcolm E" uniqKey="Johns M" first="Malcolm E" last="Johns">Malcolm E. Johns</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of Minnesota Medical School, MN 55455</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hintz, Hallie M" sort="Hintz, Hallie M" uniqKey="Hintz H" first="Hallie M" last="Hintz">Hallie M. Hintz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of Minnesota Medical School, MN 55455</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Walseth, Timothy F" sort="Walseth, Timothy F" uniqKey="Walseth T" first="Timothy F" last="Walseth">Timothy F. Walseth</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, University of Minnesota Medical School, MN 55455</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Marchant, Jonathan S" sort="Marchant, Jonathan S" uniqKey="Marchant J" first="Jonathan S" last="Marchant">Jonathan S. Marchant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA. Electronic address: JMarchant@mcw.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226</wicri:regionArea>
<wicri:noRegion>Milwaukee WI 53226</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell calcium</title>
<idno type="eISSN">1532-1991</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Calcium (metabolism)</term>
<term>Calcium Signaling (drug effects)</term>
<term>Cell Line</term>
<term>Drug Evaluation, Preclinical</term>
<term>Humans</term>
<term>Lysosomes (drug effects)</term>
<term>Lysosomes (metabolism)</term>
<term>NADP (analogs & derivatives)</term>
<term>NADP (pharmacology)</term>
<term>Ovum (drug effects)</term>
<term>Ovum (metabolism)</term>
<term>Reproducibility of Results</term>
<term>Sea Urchins (drug effects)</term>
<term>Sea Urchins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Calcium (métabolisme)</term>
<term>Echinoidea ()</term>
<term>Echinoidea (métabolisme)</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Lysosomes ()</term>
<term>Lysosomes (métabolisme)</term>
<term>NADP (analogues et dérivés)</term>
<term>NADP (pharmacologie)</term>
<term>Ovule ()</term>
<term>Ovule (métabolisme)</term>
<term>Reproductibilité des résultats</term>
<term>Signalisation du calcium ()</term>
<term>Évaluation préclinique de médicament</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>NADP</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>NADP</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Calcium Signaling</term>
<term>Lysosomes</term>
<term>Ovum</term>
<term>Sea Urchins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lysosomes</term>
<term>Ovum</term>
<term>Sea Urchins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Calcium</term>
<term>Echinoidea</term>
<term>Lysosomes</term>
<term>Ovule</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>NADP</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>NADP</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line</term>
<term>Drug Evaluation, Preclinical</term>
<term>Humans</term>
<term>Reproducibility of Results</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Echinoidea</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Lysosomes</term>
<term>Ovule</term>
<term>Reproductibilité des résultats</term>
<term>Signalisation du calcium</term>
<term>Évaluation préclinique de médicament</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Ca
<sup>2+</sup>
mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) regulates intracellular trafficking events, including translocation of certain enveloped viruses through the endolysosomal system. Targeting NAADP-evoked Ca
<sup>2+</sup>
signaling may therefore be an effective strategy for discovering novel antivirals as well as therapeutics for other disorders. To aid discovery of novel scaffolds that modulate NAADP-evoked Ca
<sup>2+</sup>
signaling in human cells, we have investigated the potential of using the sea urchin egg homogenate system for a screening campaign. Known pharmacological inhibitors of NAADP-evoked Ca
<sup>2+</sup>
release (but not cADPR- or IP
<sub>3</sub>
-evoked Ca
<sup>2+</sup>
release) in this invertebrate system strongly correlated with inhibition of MERS-pseudovirus infectivity in a human cell line. A primary screen of 1534 compounds yielded eighteen 'hits' exhibiting >80% inhibition of NAADP-evoked Ca
<sup>2+</sup>
release. A validation pipeline for these candidates yielded seven drugs that inhibited NAADP-evoked Ca
<sup>2+</sup>
release without depleting acidic Ca
<sup>2+</sup>
stores in a human cell line. These candidates displayed a similar penetrance of inhibition in both the sea urchin system and the human cell line, and the extent of inhibition of NAADP-evoked Ca
<sup>2+</sup>
signals correlated well with observed inhibition of infectivity of a Middle East Respiratory syndrome coronavirus (MERS-CoV) pseudovirus. These experiments support the potential of this simple, homogenate system for screening campaigns to discover modulators of NAADP, cADPR and IP
<sub>3</sub>
-dependent Ca
<sup>2+</sup>
signaling with potential therapeutic value.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30145428</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-1991</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>75</Volume>
<PubDate>
<Year>2018</Year>
<Month>11</Month>
</PubDate>
</JournalIssue>
<Title>Cell calcium</Title>
<ISOAbbreviation>Cell Calcium</ISOAbbreviation>
</Journal>
<ArticleTitle>A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca
<sup>2+</sup>
signaling in human cells.</ArticleTitle>
<Pagination>
<MedlinePgn>42-52</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0143-4160(18)30122-2</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ceca.2018.08.002</ELocationID>
<Abstract>
<AbstractText>The Ca
<sup>2+</sup>
mobilizing second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) regulates intracellular trafficking events, including translocation of certain enveloped viruses through the endolysosomal system. Targeting NAADP-evoked Ca
<sup>2+</sup>
signaling may therefore be an effective strategy for discovering novel antivirals as well as therapeutics for other disorders. To aid discovery of novel scaffolds that modulate NAADP-evoked Ca
<sup>2+</sup>
signaling in human cells, we have investigated the potential of using the sea urchin egg homogenate system for a screening campaign. Known pharmacological inhibitors of NAADP-evoked Ca
<sup>2+</sup>
release (but not cADPR- or IP
<sub>3</sub>
-evoked Ca
<sup>2+</sup>
release) in this invertebrate system strongly correlated with inhibition of MERS-pseudovirus infectivity in a human cell line. A primary screen of 1534 compounds yielded eighteen 'hits' exhibiting >80% inhibition of NAADP-evoked Ca
<sup>2+</sup>
release. A validation pipeline for these candidates yielded seven drugs that inhibited NAADP-evoked Ca
<sup>2+</sup>
release without depleting acidic Ca
<sup>2+</sup>
stores in a human cell line. These candidates displayed a similar penetrance of inhibition in both the sea urchin system and the human cell line, and the extent of inhibition of NAADP-evoked Ca
<sup>2+</sup>
signals correlated well with observed inhibition of infectivity of a Middle East Respiratory syndrome coronavirus (MERS-CoV) pseudovirus. These experiments support the potential of this simple, homogenate system for screening campaigns to discover modulators of NAADP, cADPR and IP
<sub>3</sub>
-dependent Ca
<sup>2+</sup>
signaling with potential therapeutic value.</AbstractText>
<CopyrightInformation>Copyright © 2018 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gunaratne</LastName>
<ForeName>Gihan S</ForeName>
<Initials>GS</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johns</LastName>
<ForeName>Malcolm E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hintz</LastName>
<ForeName>Hallie M</ForeName>
<Initials>HM</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Walseth</LastName>
<ForeName>Timothy F</ForeName>
<Initials>TF</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marchant</LastName>
<ForeName>Jonathan S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI 53226, USA. Electronic address: JMarchant@mcw.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM088790</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Cell Calcium</MedlineTA>
<NlmUniqueID>8006226</NlmUniqueID>
<ISSNLinking>0143-4160</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5502-96-5</RegistryNumber>
<NameOfSubstance UI="C024376">NAADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020013" MajorTopicYN="N">Calcium Signaling</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004353" MajorTopicYN="N">Drug Evaluation, Preclinical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008247" MajorTopicYN="N">Lysosomes</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010063" MajorTopicYN="N">Ovum</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012617" MajorTopicYN="N">Sea Urchins</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Ca(2+)release</Keyword>
<Keyword MajorTopicYN="Y">Drug screening</Keyword>
<Keyword MajorTopicYN="Y">Endosomes</Keyword>
<Keyword MajorTopicYN="Y">Lysosomes</Keyword>
<Keyword MajorTopicYN="Y">NAADP</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30145428</ArticleId>
<ArticleId IdType="pii">S0143-4160(18)30122-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.ceca.2018.08.002</ArticleId>
<ArticleId IdType="pmc">PMC6286156</ArticleId>
<ArticleId IdType="mid">NIHMS1511660</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 1993 Sep 13;1178(3):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8395888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Calcium. 2007 Jun;41(6):505-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17084890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 20;287(4):2296-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22117075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 2006 Jun;13(6):659-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16793523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Messenger (Los Angel). 2012 Jun 1;1(1):86-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24829846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Jul 15;262(20):9561-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3496336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Calcium. 2017 Nov;67:148-155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28457591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Dec 11;290(50):30087-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26438825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2014 Mar 3;33(5):501-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24502975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Calcium. 2015 Jul;58(1):27-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25449298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2015 Mar;156(3):975-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25545384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 3;285(49):38511-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20880839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2017 May 15;425(2):109-129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28390800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Jul 11;7(1):5121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28698624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):E4706-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25331892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Sep 27;7(1):12348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28955042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Jul 16;261(5119):352-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8392749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2011 Apr;25(3):715-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21184822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23852</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21909365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2008 Apr 30;28(18):4690-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18448646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2017 Jan 4;93(1):132-146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27989455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1974 Sep 15;23(18):2495-531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4606365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 28;459(7246):596-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19387438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2018 Apr 5;556(7699):130-134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29562233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Dec 11;284(50):34930-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19826006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pflugers Arch. 2009 Sep;458(5):891-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19557428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Biochem Biophys. 1998;28(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9386893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Feb 27;347(6225):995-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25722412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2014 Sep 02;2014(9):988-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25183812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2015 Jul 2;34(13):1743-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25872774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 May 15;444(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22397330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2017 Feb 07;8:45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28223936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2009 Apr;5(4):220-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19234453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2014 Aug;58(8):4885-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24841273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 3;270(5):2152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7836444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2010 Nov 11;53(21):7599-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20942470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2014 Oct;42(5):1460-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25233432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2004 Apr 15;327(2):247-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15051542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Jul 27;186(2):201-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19620632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 10;531(7593):258-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26961658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2010 Jul;160(6):1464-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20590636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Malar J. 2017 Sep 12;16(1):366</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28899381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Nov 1;439(3):349-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21992097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jan 29;285(5):2897-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19940116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Oct 7;280(40):33693-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Nov;14(11):1247-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18953351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Messenger (Los Angel). 2016 Jun 1;5(1-2):92-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28758053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Apr 12;271(15):8513-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8621471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 1997 Aug;121(7):1489-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9257932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Messenger (Los Angel). 2012 Jun 1;1(1):63-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25309835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1994 May 15;300 ( Pt 1):229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8198538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1990 Oct 15;271(2):515-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2173565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2015 Jan 15;128(2):232-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25416817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2013 Jul;19(7):934-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23770692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Physiol Biochem. 2010;26(1):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20502000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2004 Aug;142(8):1241-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15265807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ILAR J. 2016 Dec;57(2):133-143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28053067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Calcium. 2014 Feb;55(2):93-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24439527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2015 Jun;43(3):384-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26009180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chembiochem. 2014 Dec 15;15(18):2774-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25399672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 20;287(4):2308-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22117077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Feb 14;152(4):778-790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23394946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Mar 10;531(7593):196-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26689363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Nov 27;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26613410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomol Screen. 1999;4(2):67-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10838414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Feb 6;290(6):3377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25480788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Feb 26;291(9):4503-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26728458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Aug 21;5:4699</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25144390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2015 Jul 07;8(384):re7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26152696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Oct 12;151(2):372-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23063126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2014 Nov 18;7(352):ra109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25406377</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Minnesota">
<name sortKey="Gunaratne, Gihan S" sort="Gunaratne, Gihan S" uniqKey="Gunaratne G" first="Gihan S" last="Gunaratne">Gihan S. Gunaratne</name>
</region>
<name sortKey="Hintz, Hallie M" sort="Hintz, Hallie M" uniqKey="Hintz H" first="Hallie M" last="Hintz">Hallie M. Hintz</name>
<name sortKey="Johns, Malcolm E" sort="Johns, Malcolm E" uniqKey="Johns M" first="Malcolm E" last="Johns">Malcolm E. Johns</name>
<name sortKey="Marchant, Jonathan S" sort="Marchant, Jonathan S" uniqKey="Marchant J" first="Jonathan S" last="Marchant">Jonathan S. Marchant</name>
<name sortKey="Walseth, Timothy F" sort="Walseth, Timothy F" uniqKey="Walseth T" first="Timothy F" last="Walseth">Timothy F. Walseth</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 001F42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     pubmed:30145428
   |texte=   A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca2+ signaling in human cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:30145428" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021